NOAA fish study underway on New England offshore wind area

An autonomous undersea glider deployed in December 2019 is helping to map cod spawning habitat around offshore wind energy areas off southern New England. NMFS photo.

By Kirk Moore on MARCH 12, 2020   An autonomous undersea glider deployed in December 2019 is helping to map cod spawning habitat around offshore wind energy areas off southern New England. NMFS photo.

A three-year study of cod and other commercial fish species is underway around New England offshore wind energy sites, part of a National Oceanic and Atmospheric Administration effort to better understand how proposed turbine arrays will affect the environment and fisheries.

With universities and other partners, the agency’s National Marine Fisheries Service in December deployed a Slocum electric glider, a type of autonomous underwater vehicle that has proven highly successful in long-term oceanographic studies.

The glider’s instrument payload includes a hydrophone to detect the sounds of whales and of fish spawning, and an acoustic telemetry receiver to pick up signals from fish that have been captured and released with acoustic tags to track their movements.

The survey is covering an area that includes the proposed South Fork Wind Farm south of Rhode Island. BOEM image.

Now surveying the area around Cox’s Ledge, the glider is covering an area that includes wind developer Ørsted’s planned South Fork wind energy area south of Rhode Island and east of Montauk, N.Y.The survey is covering an area that includes the proposed South Fork Wind Farm south of Rhode Island. BOEM image.

Running on battery power, undersea gliders use a system of water ballast and pumps to slowly climb and dive in the water column, their wings generating lift and forward motion. With their long range and endurance, gliders can survey large areas for weeks at a time, occasionally surfacing to send collected data to vessels or shore by satellite uplink.

For this phase of the study, the acoustic data “will identify location and seasonal occurrence of hotspots for key commercial and federally listed fish species,” according to NOAA.

There is little specific information on Atlantic cod spawning in southern New England waters, according to project lead Sofie Van Parijs, who heads the Passive Acoustics Research Group at the Northeast Fisheries Science Center laboratory in Woods Hole, Mass.

Elsewhere, cod have been are known to form large, dense spawning aggregations in predictable locations relatively close to shore. That can make them vulnerable to disturbances that might affect spawning success, according to NMFS.

“Biological sampling will determine the population’s onset of spawning and track growth, maturity, age structure, and other life history parameters,” Van Parijs said. “This information will help inform the starting date for our glider surveys each year. We will tentatively conduct these surveys from December through March this year and for longer periods in the subsequent two years.”

The study is underway at a critical time for the future of the fledging U.S. offshore wind energy. In August 2019 the federal Bureau of Ocean Energy Management was compelled to hold up its environmental impact statement for the Vineyard Wind project off Massachusetts, after NMFS insisted more information was needed about potential effects on the marine environment and fisheries.

Even before the agencies came to an impasse over the environmental assessment, fisheries scientists had been warning there needs to be more baseline information about fish populations around proposed wind power sites before construction.

Now BOEM is funding the acoustic surveys. Data for a larger study by the offshore energy planners, including potential cumulative impacts of Vineyard Wind and other projects, is scheduled to start being assembled by mid-June, with a final report scheduled for December 2020.The glider uses water ballast and wings to slowly ‘fly’ underwater over long ranges carrying its instrument package. Christopher McGuire/Nature Conservancy photo.

Ørsted is using the glider detection of endangered whales to guide plans for monitoring and mitigation requirements in the South Fork project, where the company hopes begin construction as early as 2021. Similar mapping will be used for planning the company’s other projects off the East Coast, including Ocean Wind array off southern New Jersey.

For the fisheries aspect of the study, researchers will tag up to 100 spawning cod with acoustic transmitters so the glider can identify spawning area. Other sensors carried on the glider collect detailed environmental data, to help scientists better understand the temperature preferences and habitat use of spawning cod in the region.

A new near real-time telemetry system is operating detect whales and fish, and the public can see data and photos as they come in from the project on a new public web page.

The project team includes experts from the NOAA Fisheries Northeast Fisheries Science Center; Woods Hole Oceanographic Institution; Massachusetts Department of Marine Fisheries; The Nature Conservancy; University of Massachusetts Dartmouth School for Marine Science & Technology; the NMFS Greater Atlantic Regional Fisheries Office; and Rutgers University.

NIMBY folks in Wainscott

Following is in response to the recent opinion piece in Newsday.

Last Sunday’s Opinion,  winds of change, is clearly an opinion of  NIMBY folks in Wainscott (population 700+) who don’t let facts interfere with their story. 

Win With Wind’s (formed in 2019) sole purpose is to produce fact-based information regarding the benefits of renewable offshore wind energy.  Win With Wind is independent and not affiliated with any wind or energy development company and has no financial ties with any interest group or individual who has a monetary stake in such an enterprise. Win With Wind is non-partisan and does not promote or oppose the candidacy of any individuals for public office at any level.  The only former town official on its 4 member board or 7 member steering committee is a former East Hampton Town Supervisor who left office more than 30 years ago.

Citizens for the Preservation of Wainscott is a small group with significant money that has hired teams of lawyers, engineers, PR firms, etc., to push alternative landing sites, that are all problematic. 

East Hampton locals are concerned about climate change.  Citizens for the Preservation of Wainscott selfishly don’t want to be inconvenienced.

The South Fork Wind Farm will power 70,000 homes and off-set 300,000 tons of carbon emissions each year.

Jerry Mulligan, WinWithWind Steering Committee

 

A Fisherman’s Perspective about Offshore Wind

Paul Forsberg A Fisherman’s Perspective about Offshore Wind after serving 8 months as a Captain on an Offshore Wind Survey Vessel. Click on the below image to see the YouTube video https://www.youtube.com/watch?v=0rmu5zQ0OLk

This is a must watch for all of us. Could not say it better.

Wind Turbines Are Not Killing Fields for Birds

Sep 3, 2019, from STATISTA

President Trump continues his years’ long dispute with wind turbines, claiming that wind turbines diminish home property values, cause cancer, and “kill all the birds.”

Wind turbines have not been found to diminish home values of nearby properties or cause cancer. According to numbers aggregated by the United States Fish and Wildlife Service, cats are a bigger scrooge to the overall bird community than wind turbines. The most recent estimate places the number of bird deaths at the paws of cats at 2.4 billion. Collisions from wind turbines on land killed a small fraction of birds in comparison to the damage that cats and glass buildings cause to the general bird population. Land wind turbines were responsible for over 200,000 bird deaths while collisions from building glass are estimated to be responsible for nearly 600 million bird deaths. The U.S. Fish and Wildlife Service did not provide estimates for deaths resulting from offshore wind turbines.

As the wind power industry grows and expands, the renewable’s relationship to its environment is coming under more intense scrutiny. While the relationship between wind turbines and different types of bird populations, particularly apex birds, is understudied, there is some evidence that turbines can hurt those populations. Hawaii, home to many endangered species, has taken extra steps to protect species that could be vulnerable to wind energy. The state requires all potential wind projects on both private and public land to have permits and conservation plans for the bird and bat population. Hawaii also documents animal mortality data from independent, third-party experts, with some wind farms subjected to steep fines for killing any federally protected birds.

As wind turbines become more common, reforms in this spirit could help alleviate some of the drawbacks of the new energy source.

Infographic: Wind Turbines Are Not Killing Fields for Birds | Statista

Get with the Program

LTE published in the East Hampton Star:

Negotiation
East Hampton
December 23, 2019

To the Editor:

Initially, Citizens for the Preservation of Wainscott claimed that it supported the South Fork Wind Farm but did not want the cable buried under Beach Lane. Interesting, Wainscott made no objection earlier in the year to East Hampton Town and Suffolk County burying nine miles of water pipe in Wainscott roadways (including Beach Lane) when the water quality of Wainscott’s aquifer was called into question.

Next, C.P.W. argued that the cable should come ashore at Hither Hills. The plan was to bury it under Montauk Highway from Hither Hills through Amagansett and East Hampton Village and then up Route 114 to the Cove Hollow Road substation. This would be very disruptive to homes, businesses, and traffic along this 11-mile route. This would take two off-seasons to complete. When asked why this was preferable, Citizens for the Preservation of Wainscott had no answer. F.Y.I., Beach Lane has six year-round residences.

Now, C.P.W. is opposed to the wind farm because the price negotiated with LIPA is too high. The agreement between Deepwater/Orsted and LIPA (which was approved by the New York State Public Service Commission) was the result of a public bid, which Deepwater/Orsted won because it provided electricity at the lowest cost. Now, four-plus years later, new wind farm bids are coming in even lower. Such prices will benefit South Fork residents since PSEG prices are based on a mix of all the prices it pays for the electricity it delivers. Lower prices for power from the newer wind farms will lower PSEG costs, and thus bills to consumers will go down.

Recently, C.P.W. claimed, without any supporting details, that within five years there would be more efficient and affordable ways to solve the power needs on the East End. Ninety-nine percent of scientists agree climate change is a current crisis. We need immediate action to address South Fork power needs, air pollution, health risks, sea level rise, as well as the existential crisis of climate change.

Finally, C.P.W. complains that Orsted is breaking its promise to explore the Hither Hills route in the Public Service Commission settlement negotiations, which are ongoing. Significant time was spent on the Hither Hills route during those negotiations, and on Jan. 8, at the request of C.P.W., an additional settlement negotiation will be held to allow C.P.W. to present its alternative route.

Orsted has gone out of its way to cooperate with C.P.W. The only deception has been on the part of C.P.W., which has little credibility. Clearly, C.P.W. is just a small, moneyed Nimby group who wants electricity for Wainscott without any involvement or inconvenience on their part.

It’s time for C.P.W. to get with the program and support the wind farm, which will provide electricity to 70,000 South Fork homes, including the 700 or so in Wainscott.

JERRY MULLIGAN

Good News from Vineyard Wind in Rhode Island

RI official applauds wind farm layout announcement

RI official applauds wind farm layout announcement: Says Vineyard Wind agreeing to plan it rejected nearly 2 years ago. By Bruce Mohl – Nov 20, 2019

THE EXECUTIVE DIRECTOR of the Rhode Island Coastal Resources Management Council applauded Vineyard Wind and four other companies for agreeing to a common layout for their New England offshore wind farms, but he said the configuration the firms are proposing is exactly what his agency pressed Vineyard Wind to adopt nearly two years ago.

Grover Fugate said the decision by the wind farm developers to go with a standard east-west orientation with each turbine one nautical mile apart settles a lot of concerns about how fishing, navigation, and search and rescue operations can coexist with the developing offshore wind industry. “I think it takes a lot of the issues off the table,” he said.

Getting issues off the table was a big priority for all the companies, as the industry is temporarily stalled while the Coast Guard and the federal Bureau of Ocean Energy Management are trying to decide how Vineyard Wind’s first-in-the-nation proposal will mesh with other projects coming along in the development pipeline. While some fishing interests are still grumbling about this week’s turbine layout proposal, Fugate’s personal endorsement is a strong signal the initiative is likely to pass muster with both fishermen and federal regulators.

Still, Fugate can’t help but chuckle how Vineyard Wind came around to the council’s point of view. “The alignment that they’re doing is what we were trying to get Vineyard Wind to do two years ago,” Fugate said. At the time, Vineyard Wind had proposed 84 turbines arranged on a northwest-southeast orientation, with the turbines nearly nine-tenths of a nautical mile apart. The council, representing fishing interests, pressed for an east-west orientation with one nautical mile between the turbines. Vineyard Wind resisted, insisting it was on a tight schedule to take advantage of a federal tax credit and it had already spent $25 million taking core samples from the ocean floor at each of its proposed turbine locations.

“They said it would have killed the project if we delayed it,” he said.

In February, the council and its Fishermen’s Advisory Board grumbled about Vineyard Wind’s proposed layout but nevertheless gave their blessing after the company agreed to make $4.2 million in payments to commercial fishermen over 30 years and create a $12.5 million trust to cover additional costs. If the council and its advisory board had voted against the Vineyard Wind project and ended up being overruled on appeal, they could have ended up with nothing.

Now the council may get the wind farm layout it wanted plus the settlement money it negotiated earlier. (“Our lawyers are looking at it,” Fugate said.)

Fugate said the biggest advantage of the layout proposed by the five wind farm developers is its simplicity, allowing the east-west lanes to be used for fishing and the north-south lanes for navigation. He said the east-west lanes can alternate between fixed-gear fishing (lobster) and mobile-gear fishing (squid). Fugate said the layout would appear to satisfy most fishermen, but he acknowledged some still want additional two-mile navigation lanes cutting through the wind farm areas.

A big questionmark now is whether Vineyard Wind can build its wind farm even if it passes federal muster. Fugate said the company told the Rhode Island Coastal Resources Management Council nearly two years ago that the project would go belly up if it was delayed. In mid-July, the company said the project would be at risk if it wasn’t approved by federal regulators in six weeks. In early August, the Bureau of Ocean Energy Management put the wind farm on hold indefinitely, but Vineyard Wind insisted the “project remains viable and continues to move ahead.” The joint announcement on wind farm layout earlier this week suggests Vineyard Wind continues to believe the project is viable, even though its original timetable has been blown up.

A spokesman for Vineyard Wind declined to comment on the record. In a letter to the Coast Guard released on Tuesday, the five companies — Vineyard Wind, Eversource Energy, Mayflower Wind, Orsted North America, and Equinor Wind — laid out why the standard configuration serves all interests best. “The New England leaseholders are proude to be working together to present a collaborative solution that we believe accommodates all ocean users in the region,” they said.

Grand challenges in the science of wind energy

This review Appeared in the Journal “Science”, one of the premier Journals in the world.

Authored by Paul Veers1,*, and 28 other scientists.  Science  25 Oct 2019:
Vol. 366, Issue 6464, eaau2027
DOI: 10.1126/science.aau2027

I have copied the abstract and tried to sum up the salient points. Basically, the success of Wind (and Solar) energy, and the predicted growth of the industry, has led to new challenges. Innovations are needed to handle the predicted future demand for clean energy.

Abstract

Harvested by advanced technical systems honed over decades of research and development, wind energy has become a mainstream energy resource. However, continued innovation is needed to realize the potential of wind to serve the global demand for clean energy. Here, we outline three interdependent, cross-disciplinary grand challenges underpinning this research endeavor. The first is the need for a deeper understanding of the physics of atmospheric flow in the critical zone of plant operation. The second involves science and engineering of the largest dynamic, rotating machines in the world. The third encompasses optimization and control of fleets of wind plants working synergistically within the electricity grid. Addressing these challenges could enable wind power to provide as much as half of our global electricity needs and perhaps beyond.

Introduction:

Abundant, affordable energy in many forms has enabled notable human achievements, including modern food and transportation infrastructure. Broad-based access to affordable and clean energy will be critical to future human achievements and an elevated global standard of living. However, by 2050, the global population will reach an estimated 9.8 billion, up from ~7.6 billion in 2017 (1). Moreover, Bloomberg New Energy Finance (BNEF) estimates suggest that annual global electricity demand could exceed 38,000 terawatt-hours per year by 2050, up from ~25,000 terawatt-hours in 2017 (2). The demand for low- or no-carbon technologies for electricity is increasing, as is the need for electrifying other energy sectors, such as heating and cooling and transport (24). As a result of these two partially coupled megatrends, additional sources of low-cost, clean energy are experiencing increasing demand around the globe. With a broadly available resource and zero-cost fuel, as well as exceptionally low life-cycle pollutant emissions, wind energy has the potential to be a primary contributor to the growing clean energy needs of the global community.

During the past decade, the cost of three major electricity sources—wind power, solar power, and natural gas—has decreased substantially. Wind and solar are attractive because their low life-cycle emissions offer public health and broader environmental benefits. Leading energy forecasters such as consultancies, nongovernmental organizations, and major energy companies—and specifically BNEF, DNV GL, the International Energy Agency (IEA), and BP—anticipate continued price parity among all of these sources, which will likely result in combined wind and solar supplying between one- and two-thirds of the total electricity demand and wind-only shares accounting for one-quarter to one-third across the globe by 2050 (36). Tapping the potential terawatts of wind energy that could drive the economic realization of these forecasts and subsequently moving from hundreds of terawatt-hours per year to petawatt-hours per year from wind and solar resources could provide an array of further economic and environmental benefits to both local and global communities.

From a business perspective, at just over 51 gigawatts of new wind installations in 2018 (7) and more than half a terawatt of operating capacity, the global investment in wind energy is now ~$100 billion (U.S. dollars) per annum. The energy consultant DNV GL predicts that wind energy demand and the scale of deployment will grow by a factor of 10 by 2050, bringing the industry to the trillion-dollar scale (6) and positioning wind as one of the primary sources of the world’s electricity generation.

However, to remain economically attractive for investors and consumers, the cost of energy from wind must continue to decrease (8, 9). Moreover, as deployment of variable-output wind and solar generation infrastructure increases, new challenges surface related to the adequacy of generation capacity on a long-term basis and short-term balancing of the systems—both of which are critical to maintaining future grid system stability and reliability (1012).

A future in which wind energy contributes one-third to more than one-half of consumed electricity, and in which local levels of wind-derived power may exceed 100% of local demand, will require a paradigm shift in how we think about, develop, and manage the electric grid system (1014). The associated transformation of the power system in high-renewables scenarios will require simultaneous management of large quantities of weather-driven, variable-output generation as well as evolving and dynamic consumption patterns.

A key aspect of this future system is the availability of large quantities of near-zero marginal cost energy, albeit with uncertain timing. With abundant near-zero marginal cost energy, more flexibility in the overall electricity system will allow many different end users to access these “cheap” energy resources. Potential use cases for this energy could entail charging a large number of electric vehicles, providing inexpensive storage at different system sizes (consumer to industrial) and time scales (days to months), or channeling into chemicals or other manufactured products (sometimes referred to as “power-to-X” applications).

A second key aspect of this future system is the transition from an electric grid system centered on traditional synchronous generation power plants to one that is converter dominated (15). This latter paradigm reduces the physical inertia in the system currently provided by traditional power plants while increasing reliance on information and digital signals to maintain the robustness and power quality of the modern grid (12).

Here are some interesting figures from the this Review:

Fig. 1 Global cumulative installed capacity (in gigawatts) for wind energy and estimated levelized cost of energy (LCOE) for the U.S. interior region in cents per kilowatt-hour from 1980 to the present.Historical LCOE data are from (17) and (20) and have been verified for all but 5 years with the U.S. wind industry statistics database detailed in (17). LCOE data have been smoothed with a combination of polynomial best fit and linear interpolations to emphasize the long-term trends in wind energy costs. Historical installed capacity data are from the database detailed in (17), the Global Wind Energy Council, and the American Wind Energy Association.
Fig. 2 Wind turbine blade innovation comparing a modern commercial blade (top) and a commercial blade from the mid-1980s (bottom) scaled to the same length.The modern blade is 90% lighter than the scaled 1980s technology.
NATIONAL RENEWABLE ENERGY LABORATORY (NREL) BASED ON A CONCEPT BY HENRIK STIESDAL AND KENNETH THOMSEN (SIEMENS GAMESA)
Fig. 3 Relevant wind power scales across space—from large-scale atmospheric effects in local weather at the mesoscale to inter- and intraplant flows and topography at the microscale.
ILLUSTRATION: BESIKI KAZAISHVILI, NREL
Fig. 4 Wind turbine blades are complex composite shell structures in which small-scale manufacturing flaws can grow because of the incessant turbulence-driven loading that can cause large-scale problems.
PHOTOS: NREL; ILLUSTRATION: BESIKI KAZAISHVILI, NREL
Fig. 5 Power generated by the weather-driven plant must connect to the electrical grid and support the stability, reliability, and operational needs on time scales ranging from microseconds (for managing disturbances) to decades (for long-term planning).
ILLUSTRATION: JOSH BAUER AND BESIKI KAZAISHVILI, NREL
Fig. 6 A spectrum of science, engineering, and mathematics disciplines that, if integrated, can comprehensively address the grand challenges in wind energy science.
ILLUSTRATION: JOSH BAUER, NREL

Offshore windfarms ‘can provide more electricity than the world needs’

Supplies from turbines will prove to be the next great energy revolution, IEA predicts – International Energy Agency (IEA)

Jillian Ambrose Energy correspondent

In the Guardian, Fri 25 Oct 2019 04.23 EDT First published on Thu 24 Oct 2019 14.45 EDT

“Offshore wind currently provides just 0.3% of global power generation, but its potential is vast,” the IEA’s executive director, Fatih Birol, said.

The study predicts offshore wind generation will grow 15-fold to emerge as a $1tn (£780bn) industry in the next 20 years and will prove to be the next great energy revolution.

The IEA said earlier this week that global supplies of renewable electricity were growing faster than expected and could expand by 50% in the next five years, driven by a resurgence in solar energy. Offshore wind power would drive the world’s growth in clean power due to plummeting costs and new technological breakthroughs, including turbines close to the height of the Eiffel Tower and floating installations that can harness wind speeds further from the coast.

The next generation of floating turbines capable of operating further from the shore could generate enough energy to meet the world’s total electricity demand 11 times over in 2040, according to IEA estimates.

The report predicts that the EU’s offshore wind capacity will grow from almost 20 gigawatts today to nearly 130 gigawatts by 2040, and could reach 180 gigawatts with stronger climate commitments.

In China, the growth of offshore wind generation is likely to be even more rapid, the IEA said. Its offshore wind capacity is forecast to grow from 4 gigawatts to 110 gigawatts by 2040 or 170 gigawatts if it adopts tougher climate targets.

Birol said offshore wind would not only contribute to generating clean electricity, but could also offer a major opportunity in the production of hydrogen, which can be used instead of fossil fuel gas for heating and in heavy industry.

The process of making hydrogen from water uses huge amounts of electricity but abundant, cheap offshore wind power could help produce a low-cost, zero-carbon alternative to gas.

In the North Sea, energy companies are already planning to use the electricity generated by giant offshore windfarms to turn seawater into hydrogen on a floating “green hydrogen” project, backed by the UK government. The clean-burning gas could be pumped back to shore to heat millions of homes by the 2030s. The UK has committed to reaching net zero carbon emissions by 2050.

The overlap between the UK’s declining oil and gas industry and the burgeoning offshore wind sector could offer major economic benefits for the UK, Birol said.

“Offshore wind provides a huge new business portfolio for major engineering firms and established oil and gas companies which have a strong offshore production experience,” he said. “Our analysis shows that 40% of the work in offshore wind construction and maintenance has synergies with oil and gas practises.”

We have some news… about how we will respond to the escalating climate crisis – we will not stay quiet. This is the Guardian’s pledge: we will continue to give global heating, wildlife extinction and pollution the urgent attention and prominence they demand. The Guardian recognises the climate emergency as the defining issue of our times.

Our independence means we are free to investigate and challenge inaction by those in power. We will inform our readers about threats to the environment based on scientific facts, not driven by commercial or political interests. And we have made several important changes to our style guide to ensure the language we use accurately reflects the environmental catastrophe.

The Guardian believes that the problems we face on the climate crisis are systemic and that fundamental societal change is needed. We will keep reporting on the efforts of individuals and communities around the world who are fearlessly taking a stand for future generations and the preservation of human life on earth. We want their stories to inspire hope. We will also report back on our own progress as an organisation, as we take important steps to address our impact on the environment.

The Guardian made a choice: to keep our journalism open to all. We do not have a paywall because we believe everyone deserves access to factual information, regardless of where they live or what they can afford.

We hope you will consider supporting the Guardian’s open, independent reporting today. Every contribution from our readers, however big or small, is so valuable

An introduction to the state of wind power in the U.S.

Yale Climate Connections

Rural and often conservative states are leading the way in harnessing the wind.

By Philip Warburg; Monday, October 7, 2019
Farm and wind turbine
The Meadow Lake Wind Farm, northwest of Indianapolis, generates enough power for 220,000 average Indiana homes. (Photo credit: Philip Warburg)

Advances in technology, improved economics, and broad political support are making wind power a formidable twenty-first century energy resource. Top-ranking Denmark draws 41% of its electricity from wind; Ireland follows with 28%; the European Union as a whole gets 14% of its power from wind.

America’s wind farms currently produce 6.6% of the nation’s electricity. As a share of total power generation, that may sound relatively modest, but the U.S. ranks second only to China in the quantity of power-generating capacity that comes from wind. Moreover, the U.S. has scarcely begun to tap its vast wind power potential. On land, U.S. wind resources are capable of yielding about nine times the nation’s power needs. Offshore wind – wholly unexploited to date – could meet nearly twice the nation’s electricity demand.

Looking ahead, the Department of Energy has prepared a scenario for 35% wind reliance by 2050. While that level of wind generation sounds like major progress, it may be substantially less than is needed for renewable energy resources to be the primary drivers of a net-zero carbon U.S. economy.

Wind power’s evolution

Wind power has served various purposes in America since colonial times, but it first became available as a source of electricity in the early 20th century, when modestly scaled wind chargers supplied power to thousands of American homesteads and farm operations. Soon, however, a built-out grid brought centrally generated electricity to the nation’s rural areas, leaving little room for small-scale wind. It wasn’t until the mid-1970s that the Arab oil embargo and a growing interest in renewable energy gave rise to a second wave of American wind power.

In 1978, the Public Utility Regulatory Policies Act (PURPA) broke open the U.S. power market by requiring utilities to buy electricity from independent companies so long as they could generate electricity at less than the “avoided cost” of new utility-generated power. That law paved the way for America’s first commercial wind farm developers. A federal investment tax credit gave wind farms an additional push, particularly in California where a matching state tax credit earned renewable energy investors a 50% combined tax break.

These incentives created a super-heated climate for eager wind energy entrepreneurs. Often relying on minimally tested technology, California’s early wind farms experienced a high rate of mechanical and structural failure, supplying ample fodder to politicians who much preferred mining domestic coal and drilling for oil and gas.

The federal investment tax credit lapsed in 1985 and the California tax credit ratcheted down over the subsequent two years, slowing commitments to new wind projects. A federal incentive for wind was revived in 1992, but this time it was reformulated as a production tax credit that rewarded the actual generation of electricity. Hampered by repeated delays in reauthorization, the federal production tax credit has nevertheless been a key catalyst to wind power’s ascent, reinforced by widely adopted state-level renewable electricity standards that require utilities to increase their reliance on wind and other sources of renewable energy.

The scaling up and declining cost of wind power

The average wind turbine today is nearly three times taller than turbines built in the early 1990s. [See Figure 1.] This allows modern wind farms to tap the stronger, more constant winds that prevail at higher altitudes. Because wind power increases as the cube of wind speed, the gains from taller towers are particularly momentous.

A further boost to output comes from development and use of much larger rotors. Applying the formula for the area of a circle (A= π r2), an increase in blade length (i.e. rotor radius) translates into a disproportionate expansion of the rotor’s “swept area,” a key to determining the amount of wind that is captured and converted into electricity.

Figure 1
Source: Berkeley Lab, 2016

While wind turbines have grown dramatically in size, the cost of building and operating U.S. wind farms has dropped in recent years, making them now fully competitive with the two other leading sources of new power generation: solar photovoltaics and combined cycle gas. According to Lazard, the levelized cost of land-based wind power ranges from $29 to $56 per megawatt-hour; photovoltaics cost from $36 to $46 per megawatt-hour; and combined cycle gas runs from $41 to $74 per megawatt-hour. Nuclear power is much more expensive at $112 to $189 per megawatt-hour.

The geopolitics of wind

As a non-carbon-emitting technology, wind power has a big environmental advantage over its leading fossil fuel competitors. Onshore and offshore wind has a life cycle carbon footprint of 20 grams or less of CO2 equivalent per kilowatt-hour. The “cleanest” natural gas power plants – those that use combined cycle technology – produce more than 400 grams of CO2 equivalent per kilowatt-hour. Supercritical coal plants – the least polluting in the industry – generate close to 800 grams of CO2 equivalent per kilowatt-hour.

While attractive to many who see climate change as a real and immediate threat, wind power has developed much of its momentum in relatively conservative rural states [see Table 1]. In 2018, 13 states in the nation’s interior region accounted for more than 80% of new wind capacity additions.

Table 1
Source: American Wind Energy Association, 2019

Robust and relatively steady winds in the so-called Wind Belt, from Texas on up through the Dakotas, partially account for the heartland’s heavy investment in wind [see map]. Economics are also at play. Not only are many of the 111,000 American wind power jobs located in rural areas, but substantial financial benefits accrue to farmers and ranchers who lease out small sections of their lands to wind developers. Wind farm-generated tax revenues have also aided many cash-strapped rural communities.

NREL image
Source: National Renewable Energy Laboratory, AWS Truepower

Watching out for birds and bats

Estimates vary, but hundreds of thousands of birds per year are thought to be killed by wind turbines, and those numbers are expected to rise as wind power’s use expands.

The U.S. Fish and Wildlife Service has an Avian Radar Project that helps wind developers identify and steer clear of major bird migratory corridors when siting new wind farms. At some operating wind farms where raptors and other vulnerable bird species may be present, specialized detection equipment and human monitors can halt turbines as birds approach.

While bird fatalities are certainly cause for concern, wind energy proponents urge that they be viewed in perspective. The U.S. Fish and Wildlife Service estimates that 365 to 988 million birds die each year by crashing into building windows, and 89 to 340 million die in collisions with cars. Communication towers and electric utility lines cause millions of additional bird deaths annually. And the ravages of climate change caused by fossil fuel burning will wipe out vastly greater numbers of birds as entire ecosystems are disrupted.

Efforts are also being made to minimize harm to bats living near wind farms. Because bats generally fly in low winds hunting for insects, studies have shown that their mortality rates can be minimized by curtailing wind operations during these times – precisely when there are limited economic gains from keeping turbines running. The Beech Ridge Wind Energy Project, located in a wooded area of West Virginia, has been particularly engaged in these curtailment efforts.

Wind noise

Another commonly expressed concern involves noise resulting from wind power, with neighbors’ complaints ranging from irritability, headaches, and insomnia caused by audible sound to more tenuous claims of inner ear and sense of balance disturbances attributed to ultra-low frequency infrasound. While the transmission of turbine-generated sound can vary with topography and weather conditions, setting a minimum setback for wind turbines from the nearest inhabited buildings and outdoor public spaces is one important step that state and local governing bodies can take to protect wind farm neighbors and reduce public resistance to proposed projects.

Offshore wind – the next frontier

Though well advanced in several European nations, U.S. offshore wind got off to an unfortunate start with New England’s hotly contested Cape Wind project. Proposed for shallow waters near upscale vacation communities on Cape Cod, Martha’s Vineyard, and Nantucket, Cape Wind met with vigorous opposition. Substantially funded by fossil fuel interests, opponents objected to the project’s high cost to ratepayers, but the anticipated visual impact of turbines on Nantucket Sound drew particular hostility. Backers abandoned Cape Wind in 2018.

There’s new and increasing hope for U.S. offshore wind, with numerous federal leases opening up large expanses of ocean acreage from New England down through the mid-Atlantic. Technology advances, including floating turbines, make it possible to place wind farms in deeper waters, farther from populated coastal areas. Equally important, much lower project costs now make offshore wind a realistic competitor with other sources of power generation. Public concern and official analyses now focus on balancing wind development with fisheries and marine mammal protection and with navigational safety.

The way forward

As U.S. reliance on wind power grows, there is an increased need to build enough energy storage and demand response capability to absorb surplus power when it’s generated and adjust to shortfalls when they occur. Modernized and expanded transmission also will be required, to manage the flow of electricity from diverse energy resources across broad geographical areas. Prioritizing these investments will be essential if wind is to meet its potential as a bulwark against runaway U.S. greenhouse gas emissions.

AUTHOR
Philip Warburg, an environmental lawyer and former president of the Conservation Law Foundation, is the author of Harvest the Wind: America’s Journey to Jobs, Energy Independence, and Climate Stability. On twitter: @pwarburg.

Filed under: Philip Warburg